Flowise¶
Flowise is a powerful AI workflow builder that enables you to create, manage, and deploy complex AI workflows in the Local AI Cyber Lab environment.
Architecture Overview¶
graph TB
subgraph Frontend["Frontend"]
designer["Flow Designer"]
templates["Template Library"]
debug["Debug Console"]
settings["Settings Panel"]
end
subgraph Backend["Backend"]
engine["Workflow Engine"]
executor["Flow Executor"]
scheduler["Task Scheduler"]
subgraph Components["Component System"]
nodes["Node Types"]
connectors["Connectors"]
tools["Tool Integration"]
end
end
subgraph Storage["Persistent Storage"]
flows["Flow Definitions"]
credentials["Credentials"]
cache["Execution Cache"]
end
Frontend --> Backend
Backend --> Storage
Components --> engine
classDef primary fill:#f9f,stroke:#333,stroke-width:2px
classDef secondary fill:#bbf,stroke:#333,stroke-width:1px
class designer,engine primary
class nodes,tools secondary
Workflow Structure¶
graph LR
subgraph Input["Input Nodes"]
text["Text Input"]
file["File Upload"]
api["API Request"]
end
subgraph Processing["Processing Nodes"]
llm["LLM Node"]
chain["Chain Node"]
tool["Tool Node"]
memory["Memory Node"]
end
subgraph Output["Output Nodes"]
response["Response"]
file_out["File Output"]
api_out["API Response"]
end
Input --> Processing
Processing --> Output
classDef input fill:#green,stroke:#333
classDef process fill:#blue,stroke:#333
classDef output fill:#red,stroke:#333
class text,file,api input
class llm,chain,tool,memory process
class response,file_out,api_out output
Installation¶
Flowise is included in the Local AI Cyber Lab. For manual setup:
Configuration¶
Environment Variables¶
# .env file
FLOWISE_PORT=3000
FLOWISE_USERNAME=admin
FLOWISE_PASSWORD=secure-password
FLOWISE_DATABASE_PATH=/data/flowise.db
Security Settings¶
# docker-compose.yml
services:
flowise:
environment:
- FLOWISE_USERNAME=${FLOWISE_USERNAME}
- FLOWISE_PASSWORD=${FLOWISE_PASSWORD}
- FLOWISE_SECRETKEY=${FLOWISE_SECRETKEY}
Component Types¶
Input Components¶
-
Text Input:
-
File Input:
Processing Components¶
-
LLM Node:
-
Chain Node:
Workflow Examples¶
Basic Chat Flow¶
const chatFlow = {
"nodes": [
{
"id": "input",
"type": "text_input",
"data": {
"name": "User Input"
}
},
{
"id": "llm",
"type": "llm",
"data": {
"model": "llama2",
"temperature": 0.7
}
},
{
"id": "output",
"type": "response",
"data": {
"format": "text"
}
}
],
"edges": [
{
"source": "input",
"target": "llm"
},
{
"source": "llm",
"target": "output"
}
]
}
Advanced Processing Flow¶
const advancedFlow = {
"nodes": [
{
"id": "input",
"type": "file_input",
"data": {
"allowedTypes": ["text/*"]
}
},
{
"id": "parser",
"type": "text_parser",
"data": {
"format": "markdown"
}
},
{
"id": "memory",
"type": "memory",
"data": {
"type": "buffer",
"size": 5
}
},
{
"id": "llm",
"type": "llm",
"data": {
"model": "llama2",
"systemPrompt": "Analyze the following text:"
}
}
]
}
Integration¶
API Integration¶
import requests
def create_workflow(workflow_data):
response = requests.post(
"http://localhost:3000/api/v1/workflows",
json=workflow_data,
headers={
"Authorization": f"Bearer {API_KEY}"
}
)
return response.json()
def execute_workflow(workflow_id, inputs):
response = requests.post(
f"http://localhost:3000/api/v1/workflows/{workflow_id}/execute",
json={"inputs": inputs},
headers={
"Authorization": f"Bearer {API_KEY}"
}
)
return response.json()
Component Development¶
import { INode, INodeData } from '../../../src/Interface'
class CustomNode implements INode {
label: string
name: string
type: string
icon: string
category: string
baseClasses: string[]
constructor() {
this.label = 'Custom Node'
this.name = 'customNode'
this.type = 'customNode'
this.icon = 'custom.svg'
this.category = 'Custom'
this.baseClasses = ['custom']
}
async init(nodeData: INodeData): Promise<any> {
const input = nodeData.inputs?.input
// Custom processing logic
return processedOutput
}
}
Monitoring¶
Health Checks¶
# docker-compose.yml
services:
flowise:
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:3000/health"]
interval: 30s
timeout: 10s
retries: 3
Performance Monitoring¶
// Monitor workflow execution
const monitorWorkflow = async (workflowId) => {
const metrics = {
executionTime: 0,
memoryUsage: 0,
nodeCount: 0
}
// Collect metrics
const start = Date.now()
const result = await executeWorkflow(workflowId)
metrics.executionTime = Date.now() - start
// Report metrics
await reportMetrics(metrics)
}
Troubleshooting¶
Common Issues¶
-
Workflow Execution Issues:
-
Component Issues:
Additional Resources¶
Best Practices¶
- Workflow Design:
- Keep workflows modular
- Use appropriate error handling
- Implement logging
-
Test thoroughly
-
Security:
- Secure API endpoints
- Manage credentials safely
- Monitor access
-
Regular updates
-
Performance:
- Optimize node connections
- Use caching when appropriate
- Monitor resource usage
- Regular maintenance