AI Workflows Guide¶
Introduction¶
This guide explains how to create and manage AI workflows using Local-AI-Cyber-Lab's integrated tools. We'll cover workflow creation, automation, and best practices for different use cases.
Tools Overview¶
1. Flowise¶
- Visual workflow builder
- Node-based programming
- Multiple LLM support
- API generation
2. n8n¶
- Automation platform
- 200+ integrations
- Custom JavaScript code
- Webhook support
3. LangFuse¶
- Workflow monitoring
- Performance tracking
- Error detection
- Usage analytics
Creating Basic Workflows¶
1. Chat Interface Workflow¶
Using Flowise:
graph LR
A[User Input] --> B[Input Parser]
B --> C[LLM Node]
C --> D[Response Formatter]
D --> E[Output]
Configuration:
nodes:
input_parser:
type: text
format: markdown
llm:
type: ollama
model: mistral
temperature: 0.7
formatter:
type: text
format: html
2. Document Processing¶
Using n8n:
// Document processing workflow
const workflow = {
nodes: [
{
type: 'webhook',
endpoint: '/process-doc'
},
{
type: 'function',
code: 'return {text: $input.body.text}'
},
{
type: 'ai',
model: 'mistral',
prompt: 'Summarize:'
}
]
}
Advanced Workflows¶
1. Multi-Model Chain¶
# Example chain configuration
chain = {
"name": "Advanced Analysis",
"models": [
{
"name": "mistral",
"task": "initial_analysis"
},
{
"name": "codellama",
"task": "code_generation"
},
{
"name": "llama2",
"task": "final_review"
}
]
}
2. Data Processing Pipeline¶
pipeline:
steps:
- name: data_ingestion
type: file_reader
format: csv,json,txt
- name: preprocessing
type: text_cleaner
operations:
- remove_html
- normalize_text
- name: embedding
type: vector_encoder
model: all-MiniLM-L6-v2
- name: storage
type: qdrant
collection: processed_data
Integration Examples¶
1. API Integration¶
from fastapi import FastAPI
from flowise_sdk import FlowiseAPI
app = FastAPI()
flowise = FlowiseAPI()
@app.post("/process")
async def process_request(data: dict):
result = await flowise.run_workflow(
workflow_id="your-workflow-id",
input_data=data
)
return result
2. Database Integration¶
from qdrant_client import QdrantClient
from langfuse.client import Client
# Initialize clients
qdrant = QdrantClient()
langfuse = Client()
async def search_and_process(query: str):
# Search similar vectors
results = qdrant.search(
collection_name="data",
query_vector=generate_embedding(query)
)
# Process with LLM
response = await process_with_context(
query=query,
context=results
)
# Log interaction
langfuse.log_interaction(
type="query",
input=query,
output=response
)
Monitoring and Optimization¶
1. Performance Monitoring¶
Using LangFuse:
from langfuse import Langfuse
langfuse = Langfuse()
def monitor_workflow(workflow_id: str):
metrics = langfuse.get_metrics(
workflow_id=workflow_id,
timeframe="1d"
)
return {
"latency": metrics.avg_latency,
"success_rate": metrics.success_rate,
"error_rate": metrics.error_rate,
"cost": metrics.total_cost
}
2. Error Handling¶
try:
result = await workflow.execute(input_data)
except WorkflowError as e:
# Log error
langfuse.log_error(
workflow_id=workflow.id,
error=str(e),
severity="high"
)
# Fallback strategy
result = await fallback_workflow.execute(input_data)
Best Practices¶
1. Workflow Design¶
- Keep workflows modular
- Implement error handling
- Use version control
- Document dependencies
2. Performance¶
- Cache frequent requests
- Optimize model selection
- Monitor resource usage
- Implement rate limiting
3. Security¶
- Validate inputs
- Sanitize outputs
- Implement access control
- Monitor usage patterns
Workflow Templates¶
1. Content Generation¶
name: content_generator
version: 1.0
steps:
- name: topic_analysis
type: llm
model: mistral
- name: research
type: web_search
sources: ["approved_sites"]
- name: content_creation
type: llm
model: llama2
- name: review
type: human_review
approval_required: true
2. Code Analysis¶
name: code_analyzer
version: 1.0
steps:
- name: code_parsing
type: parser
language: auto
- name: security_scan
type: security_check
rules: ["owasp_top_10"]
- name: improvement_suggestions
type: llm
model: codellama
Support¶
For workflow-related assistance:
- Email: support@cyber-ai-agents.com
- Documentation: Workflow API
- Examples: Workflow Templates