MLOps Pipeline Guide¶
Complete guide to setting up and managing MLOps pipelines in Local AI Cyber Lab, covering automation, monitoring, and best practices for machine learning operations.
Overview¶
The MLOps pipeline in Local AI Cyber Lab provides an end-to-end workflow for machine learning operations, from development to deployment and monitoring.
Pipeline Components¶
Development Environment¶
- Jupyter Lab for experimentation
- VS Code integration
- Git version control
- Development containers
Training Infrastructure¶
- MLflow experiment tracking
- Distributed training support
- GPU resource management
- Dataset versioning
Model Registry¶
- Version control
- Model metadata
- Artifact storage
- Deployment history
Deployment Pipeline¶
- Continuous Integration
- Automated testing
- Deployment automation
- Rollback mechanisms
Setting Up MLOps Pipeline¶
1. Initialize Development Environment¶
# Start Jupyter Lab
docker-compose up jupyter
# Configure Git integration
git config --global user.name "Your Name"
git config --global user.email "your.email@example.com"
2. Configure MLflow¶
# mlflow-config.yaml
mlflow:
tracking_uri: http://mlflow:5000
experiment_name: my-experiment
artifact_location: s3://mlflow-artifacts
registry_uri: http://mlflow:5000
3. Setup Model Registry¶
import mlflow
from mlflow.tracking import MlflowClient
# Initialize client
client = MlflowClient()
# Create new model version
model_version = client.create_model_version(
name="my-model",
source="s3://model-artifacts/model.pkl",
run_id="run_123"
)
Pipeline Workflows¶
Training Pipeline¶
import mlflow
def training_pipeline(data, config):
with mlflow.start_run():
# Log parameters
mlflow.log_params(config)
# Train model
model = train_model(data, config)
# Log metrics
mlflow.log_metrics({
"accuracy": model.accuracy,
"loss": model.loss
})
# Save model
mlflow.pytorch.log_model(model, "model")
Deployment Pipeline¶
def deployment_pipeline(model_name, version):
# Load model from registry
model = mlflow.pyfunc.load_model(
f"models:/{model_name}/{version}"
)
# Deploy model
deploy_model(model, {
"endpoint": "/predict",
"replicas": 3
})
Monitoring & Logging¶
MLflow Tracking¶
# Track experiments
mlflow.set_experiment("my-experiment")
with mlflow.start_run():
# Log parameters
mlflow.log_param("learning_rate", 0.01)
# Log metrics
mlflow.log_metric("accuracy", 0.95)
# Log artifacts
mlflow.log_artifact("model.pkl")
Prometheus Metrics¶
# prometheus-config.yaml
scrape_configs:
- job_name: 'mlflow'
static_configs:
- targets: ['mlflow:5000']
- job_name: 'model-serving'
static_configs:
- targets: ['model-api:8080']
CI/CD Integration¶
GitHub Actions Workflow¶
name: MLOps Pipeline
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
jobs:
train:
runs-on: self-hosted
steps:
- uses: actions/checkout@v2
- name: Train Model
run: python train.py
deploy:
needs: train
runs-on: self-hosted
steps:
- name: Deploy Model
run: python deploy.py
Best Practices¶
Version Control¶
- Use Git for code versioning
- Version control data and models
- Maintain documentation
- Track experiments
Testing¶
- Unit tests for components
- Integration tests
- Model validation
- Performance testing
Monitoring¶
- Track model performance
- Monitor resource usage
- Alert on anomalies
- Log all operations
Troubleshooting¶
Common Issues¶
- Pipeline failures
- Resource constraints
- Version conflicts
- Integration issues
Solutions¶
- Check logs
- Verify configurations
- Test integrations
- Monitor resources
Related Resources¶
Support¶
For MLOps assistance: - 📧 Email: support@cyber-ai-agents.com - 📚 Documentation - 💬 Community Forum