Skip to content

AI Model Management Guide

Comprehensive guide for managing, deploying, and monitoring AI models in your Local AI Cyber Lab environment.

Overview

Model management in Local AI Cyber Lab provides a centralized system for handling the complete lifecycle of AI models, from deployment to monitoring and version control.

Model Management Features

Model Registry

  • Version control for models
  • Model metadata tracking
  • Dependency management
  • Model lineage tracking

Deployment Management

  • Zero-downtime deployments
  • A/B testing support
  • Rollback capabilities
  • Resource allocation

Model Serving

  • REST API endpoints
  • Batch inference
  • Real-time predictions
  • Load balancing

Working with Models

Adding New Models

# Pull a model from Ollama
ollama pull mistral
ollama pull codellama

# List available models
ollama list

# Check model status
ollama status mistral

Model Configuration

model:
  name: mistral
  version: 1.0
  parameters:
    temperature: 0.7
    max_tokens: 2048
    top_p: 0.9
  resources:
    gpu_memory: 8G
    cpu_limit: 4

Deployment Examples

Basic Deployment

# Deploy a model
ollama run mistral

# Deploy with custom configuration
ollama run mistral --config config.yaml

Advanced Deployment

from ollama import Ollama

# Initialize client
client = Ollama()

# Deploy model with specific configuration
model = client.deploy(
    "mistral",
    config={
        "temperature": 0.7,
        "max_tokens": 2048
    }
)

Model Monitoring

Performance Metrics

  • Inference latency
  • Throughput
  • Error rates
  • Resource utilization

Usage Analytics

  • Request patterns
  • Token usage
  • User statistics
  • Cost analysis

Best Practices

Resource Management

  1. Monitor GPU utilization
  2. Implement caching strategies
  3. Optimize batch sizes
  4. Use appropriate quantization

Version Control

  1. Use semantic versioning
  2. Document model changes
  3. Track dependencies
  4. Maintain model cards

Security

  1. Implement access controls
  2. Monitor for anomalies
  3. Regular security scans
  4. Data validation

Integration Examples

API Integration

import requests

def query_model(prompt):
    response = requests.post(
        "http://localhost:11434/api/generate",
        json={
            "model": "mistral",
            "prompt": prompt
        }
    )
    return response.json()

Batch Processing

def batch_process(inputs, model_name="mistral"):
    results = []
    for input_data in inputs:
        result = query_model(input_data)
        results.append(result)
    return results

Troubleshooting

Common Issues

  1. Memory allocation errors
  2. GPU compatibility issues
  3. API timeout errors
  4. Version conflicts

Solutions

  1. Check resource allocation
  2. Verify GPU drivers
  3. Adjust timeout settings
  4. Update dependencies

Support

For model management assistance: - 📧 Email: support@cyber-ai-agents.com - 📚 Documentation - 💬 Community Forum