AI Model Management Guide¶
Comprehensive guide for managing, deploying, and monitoring AI models in your Local AI Cyber Lab environment.
Overview¶
Model management in Local AI Cyber Lab provides a centralized system for handling the complete lifecycle of AI models, from deployment to monitoring and version control.
Model Management Features¶
Model Registry¶
- Version control for models
- Model metadata tracking
- Dependency management
- Model lineage tracking
Deployment Management¶
- Zero-downtime deployments
- A/B testing support
- Rollback capabilities
- Resource allocation
Model Serving¶
- REST API endpoints
- Batch inference
- Real-time predictions
- Load balancing
Working with Models¶
Adding New Models¶
# Pull a model from Ollama
ollama pull mistral
ollama pull codellama
# List available models
ollama list
# Check model status
ollama status mistral
Model Configuration¶
model:
name: mistral
version: 1.0
parameters:
temperature: 0.7
max_tokens: 2048
top_p: 0.9
resources:
gpu_memory: 8G
cpu_limit: 4
Deployment Examples¶
Basic Deployment¶
# Deploy a model
ollama run mistral
# Deploy with custom configuration
ollama run mistral --config config.yaml
Advanced Deployment¶
from ollama import Ollama
# Initialize client
client = Ollama()
# Deploy model with specific configuration
model = client.deploy(
"mistral",
config={
"temperature": 0.7,
"max_tokens": 2048
}
)
Model Monitoring¶
Performance Metrics¶
- Inference latency
- Throughput
- Error rates
- Resource utilization
Usage Analytics¶
- Request patterns
- Token usage
- User statistics
- Cost analysis
Best Practices¶
Resource Management¶
- Monitor GPU utilization
- Implement caching strategies
- Optimize batch sizes
- Use appropriate quantization
Version Control¶
- Use semantic versioning
- Document model changes
- Track dependencies
- Maintain model cards
Security¶
- Implement access controls
- Monitor for anomalies
- Regular security scans
- Data validation
Integration Examples¶
API Integration¶
import requests
def query_model(prompt):
response = requests.post(
"http://localhost:11434/api/generate",
json={
"model": "mistral",
"prompt": prompt
}
)
return response.json()
Batch Processing¶
def batch_process(inputs, model_name="mistral"):
results = []
for input_data in inputs:
result = query_model(input_data)
results.append(result)
return results
Troubleshooting¶
Common Issues¶
- Memory allocation errors
- GPU compatibility issues
- API timeout errors
- Version conflicts
Solutions¶
- Check resource allocation
- Verify GPU drivers
- Adjust timeout settings
- Update dependencies
Related Resources¶
Support¶
For model management assistance: - 📧 Email: support@cyber-ai-agents.com - 📚 Documentation - 💬 Community Forum