AI Development Use Cases¶
This guide provides detailed examples of AI development scenarios you can implement using the Local AI Cyber Lab.
๐ค Chatbot Development¶
Secure Customer Service Bot¶
A practical example of building a secure customer service chatbot.
graph LR
A[User Input] --> B[AI Guardian]
B --> C[Ollama LLM]
C --> D[Response]
D --> E[Security Check]
E --> F[User]
B -- Logs --> G[Langfuse]
E -- Logs --> G
Implementation Steps¶
-
Setup Base Model
-
Create Security Rules
-
Configure Monitoring
๐ฃ๏ธ Voice Assistant Pipeline¶
Multilingual Voice Assistant¶
Example of creating a voice assistant that supports multiple languages.
graph TD
A[Audio Input] --> B[Whisper ASR]
B --> C[Text Processing]
C --> D[Ollama LLM]
D --> E[Response Text]
E --> F[Coqui TTS]
F --> G[Audio Output]
Implementation Steps¶
-
Setup Speech Recognition
-
Configure TTS
๐จ Image Generation System¶
Secure Image Generation Pipeline¶
Example of building a secure image generation system with content filtering.
graph TD
A[User Request] --> B[Content Filter]
B --> C[ComfyUI]
C --> D[Image Generation]
D --> E[Safety Check]
E --> F[Delivery]
Configuration¶
# ComfyUI workflow
nodes:
- name: content_check
type: safety_filter
params:
threshold: 0.85
- name: stable_diffusion
type: image_generator
params:
model: stable-diffusion-xl
steps: 30
- name: post_process
type: image_safety
params:
check_nsfw: true
๐ MLOps Pipeline¶
Model Training and Deployment¶
Example of setting up a complete MLOps pipeline.
graph LR
A[Data Prep] --> B[Training]
B --> C[Evaluation]
C --> D[MLflow Tracking]
D --> E[Deployment]
E --> F[Monitoring]
MLflow Configuration¶
mlflow:
tracking_uri: http://localhost:5000
experiment_name: llm_fine_tuning
tags:
environment: development
project: customer_service_bot
๐ Workflow Automation¶
Automated Content Pipeline¶
Example of automating content generation and validation.
graph TD
A[Content Request] --> B[n8n Workflow]
B --> C[AI Generation]
C --> D[Validation]
D --> E[Publishing]
n8n Workflow¶
{
"nodes": [
{
"type": "trigger",
"name": "Content Request"
},
{
"type": "ollama",
"name": "Generate Content"
},
{
"type": "ai-guardian",
"name": "Validate Content"
}
]
}
๐งช Experiment Tracking¶
A/B Testing Different Models¶
Example of comparing different models' performance.
MLflow Experiment¶
# Track experiments
with mlflow.start_run():
mlflow.log_param("model_name", "mistral")
mlflow.log_param("dataset", "customer_queries")
mlflow.log_metrics({
"accuracy": 0.95,
"latency": 120,
"memory_usage": 4.2
})
๐ Security Integration¶
Secure AI Development Pipeline¶
Example of implementing security at every stage.
graph TD
A[Development] --> B[Security Scan]
B --> C[Testing]
C --> D[Security Audit]
D --> E[Deployment]
E --> F[Monitoring]
Security Configuration¶
# AI Guardian rules
security_rules:
- name: prompt_injection
enabled: true
threshold: 0.8
- name: data_leakage
enabled: true
patterns:
- type: pii
- type: api_keys
- name: output_validation
enabled: true
checks:
- toxicity
- bias
- hallucination
๐ Performance Optimization¶
Model Optimization Pipeline¶
Example of optimizing model performance.
Performance Tracking¶
# MLflow performance tracking
metrics = {
"inference_time": 120,
"memory_usage": 4.2,
"throughput": 100
}
mlflow.log_metrics(metrics)
Next Steps¶
- Explore the Security Testing Use Cases
- Learn about Research Projects
- Check out our API Integration Guide