Skip to content

AI Development Use Cases

This guide provides detailed examples of AI development scenarios you can implement using the Local AI Cyber Lab.

๐Ÿค– Chatbot Development

Secure Customer Service Bot

A practical example of building a secure customer service chatbot.

graph LR
    A[User Input] --> B[AI Guardian]
    B --> C[Ollama LLM]
    C --> D[Response]
    D --> E[Security Check]
    E --> F[User]
    B -- Logs --> G[Langfuse]
    E -- Logs --> G

Implementation Steps

  1. Setup Base Model

    ollama pull mistral
    

  2. Create Security Rules

    # AI Guardian configuration
    {
      "rules": {
        "pii_detection": true,
        "prompt_injection": true,
        "output_sanitization": true
      }
    }
    

  3. Configure Monitoring

    # Langfuse configuration
    monitoring:
      events:
        - prompt_processing
        - response_generation
        - security_checks
    

๐Ÿ—ฃ๏ธ Voice Assistant Pipeline

Multilingual Voice Assistant

Example of creating a voice assistant that supports multiple languages.

graph TD
    A[Audio Input] --> B[Whisper ASR]
    B --> C[Text Processing]
    C --> D[Ollama LLM]
    D --> E[Response Text]
    E --> F[Coqui TTS]
    F --> G[Audio Output]

Implementation Steps

  1. Setup Speech Recognition

    # Whisper configuration
    whisper:
      model: large-v2
      language: auto
      task: transcribe
    

  2. Configure TTS

    # Coqui TTS setup
    {
      "model": "multilingual_speaker",
      "languages": ["en", "es", "fr"],
      "speakers": ["speaker_1", "speaker_2"]
    }
    

๐ŸŽจ Image Generation System

Secure Image Generation Pipeline

Example of building a secure image generation system with content filtering.

graph TD
    A[User Request] --> B[Content Filter]
    B --> C[ComfyUI]
    C --> D[Image Generation]
    D --> E[Safety Check]
    E --> F[Delivery]

Configuration

# ComfyUI workflow
nodes:
  - name: content_check
    type: safety_filter
    params:
      threshold: 0.85

  - name: stable_diffusion
    type: image_generator
    params:
      model: stable-diffusion-xl
      steps: 30

  - name: post_process
    type: image_safety
    params:
      check_nsfw: true

๐Ÿ“Š MLOps Pipeline

Model Training and Deployment

Example of setting up a complete MLOps pipeline.

graph LR
    A[Data Prep] --> B[Training]
    B --> C[Evaluation]
    C --> D[MLflow Tracking]
    D --> E[Deployment]
    E --> F[Monitoring]

MLflow Configuration

mlflow:
  tracking_uri: http://localhost:5000
  experiment_name: llm_fine_tuning
  tags:
    environment: development
    project: customer_service_bot

๐Ÿ”„ Workflow Automation

Automated Content Pipeline

Example of automating content generation and validation.

graph TD
    A[Content Request] --> B[n8n Workflow]
    B --> C[AI Generation]
    C --> D[Validation]
    D --> E[Publishing]

n8n Workflow

{
  "nodes": [
    {
      "type": "trigger",
      "name": "Content Request"
    },
    {
      "type": "ollama",
      "name": "Generate Content"
    },
    {
      "type": "ai-guardian",
      "name": "Validate Content"
    }
  ]
}

๐Ÿงช Experiment Tracking

A/B Testing Different Models

Example of comparing different models' performance.

graph TD
    A[Test Cases] --> B[Model A]
    A --> C[Model B]
    B --> D[Results]
    C --> D
    D --> E[Analysis]

MLflow Experiment

# Track experiments
with mlflow.start_run():
    mlflow.log_param("model_name", "mistral")
    mlflow.log_param("dataset", "customer_queries")
    mlflow.log_metrics({
        "accuracy": 0.95,
        "latency": 120,
        "memory_usage": 4.2
    })

๐Ÿ”’ Security Integration

Secure AI Development Pipeline

Example of implementing security at every stage.

graph TD
    A[Development] --> B[Security Scan]
    B --> C[Testing]
    C --> D[Security Audit]
    D --> E[Deployment]
    E --> F[Monitoring]

Security Configuration

# AI Guardian rules
security_rules:
  - name: prompt_injection
    enabled: true
    threshold: 0.8

  - name: data_leakage
    enabled: true
    patterns:
      - type: pii
      - type: api_keys

  - name: output_validation
    enabled: true
    checks:
      - toxicity
      - bias
      - hallucination

๐Ÿ“ˆ Performance Optimization

Model Optimization Pipeline

Example of optimizing model performance.

graph LR
    A[Baseline] --> B[Profiling]
    B --> C[Optimization]
    C --> D[Validation]
    D --> E[Deployment]

Performance Tracking

# MLflow performance tracking
metrics = {
    "inference_time": 120,
    "memory_usage": 4.2,
    "throughput": 100
}

mlflow.log_metrics(metrics)

Next Steps