Research Projects¶
This guide provides examples of research projects that can be conducted using the Local AI Cyber Lab.
๐ฌ AI Security Research¶
LLM Vulnerability Research¶
Investigating security vulnerabilities in large language models.
graph TD
    A[Research Question] --> B[Experiment Design]
    B --> C[Data Collection]
    C --> D[Analysis]
    D --> E[Findings]
    E --> F[Publication]
Research Setup¶
# Experiment configuration
experiment = {
    "title": "LLM Vulnerability Analysis",
    "models": ["mistral", "llama2", "codellama"],
    "test_cases": 1000,
    "metrics": [
        "success_rate",
        "response_consistency",
        "vulnerability_score"
    ]
}
# MLflow tracking
with mlflow.start_run(experiment_id=experiment_id):
    mlflow.log_params(experiment)
    for model in experiment["models"]:
        results = run_security_tests(model)
        mlflow.log_metrics(results)
๐งช Model Behavior Analysis¶
Comparative Model Study¶
Analyzing behavior patterns across different models.
graph LR
    A[Models] --> B[Test Suite]
    B --> C[Behavior Analysis]
    C --> D[Pattern Detection]
    D --> E[Insights]
Study Framework¶
# Research framework
study:
  models:
    - name: mistral
      version: 7b-instruct
      parameters:
        temperature: 0.7
        top_p: 0.9
    - name: llama2
      version: 13b-chat
      parameters:
        temperature: 0.7
        top_p: 0.9
  test_categories:
    - logical_reasoning
    - knowledge_retrieval
    - creative_tasks
    - ethical_decisions
  metrics:
    - response_quality
    - consistency
    - truthfulness
    - safety
๐ Performance Research¶
Model Efficiency Studies¶
Researching model performance and resource utilization.
graph TD
    A[Performance Metrics] --> B[Data Collection]
    B --> C[Analysis]
    C --> D[Optimization]
    D --> E[Validation]
Research Configuration¶
# Performance study setup
metrics = {
    "compute_efficiency": [
        "flops_per_token",
        "memory_usage",
        "inference_time"
    ],
    "quality_metrics": [
        "accuracy",
        "perplexity",
        "rouge_score"
    ],
    "resource_utilization": [
        "gpu_memory",
        "cpu_usage",
        "bandwidth"
    ]
}
# Experiment tracking
mlflow.log_params({
    "batch_sizes": [1, 8, 16, 32],
    "sequence_lengths": [128, 256, 512],
    "model_variants": ["base", "quantized", "pruned"]
})
๐ Security Protocol Research¶
Novel Security Measures¶
Developing and testing new security protocols for AI systems.
graph LR
    A[Protocol Design] --> B[Implementation]
    B --> C[Testing]
    C --> D[Analysis]
    D --> E[Refinement]
Protocol Specification¶
# Security protocol design
protocol:
  name: "AI-Guardian-Enhanced"
  components:
    - name: input_validation
      type: pre-processing
      methods:
        - semantic_analysis
        - pattern_matching
        - anomaly_detection
    - name: runtime_monitoring
      type: processing
      methods:
        - behavior_tracking
        - resource_monitoring
        - response_validation
    - name: post_processing
      type: output_validation
      methods:
        - content_filtering
        - consistency_check
        - safety_verification
๐ง Cognitive Science Research¶
AI Behavior Studies¶
Investigating AI system behavior patterns.
graph TD
    A[Research Question] --> B[Experiment Design]
    B --> C[Data Collection]
    C --> D[Analysis]
    D --> E[Findings]
Study Design¶
# Cognitive experiment setup
experiment = {
    "title": "AI Decision Making Patterns",
    "hypotheses": [
        "H1: Context length affects decision consistency",
        "H2: Memory mechanisms impact reasoning ability",
        "H3: Attention patterns correlate with accuracy"
    ],
    "measurements": [
        "response_time",
        "attention_weights",
        "decision_paths",
        "uncertainty_metrics"
    ]
}
# Data collection
def collect_behavioral_data(model, test_cases):
    results = []
    for case in test_cases:
        response = model.generate(
            prompt=case.prompt,
            collect_metrics=True
        )
        results.append({
            "attention": response.attention_patterns,
            "decision_path": response.token_probabilities,
            "response_time": response.generation_time
        })
    return results
๐ Optimization Research¶
Model Optimization Studies¶
Research on improving model efficiency and performance.
Research Framework¶
# Optimization research
optimization_study:
  techniques:
    - name: quantization
      methods:
        - int8
        - int4
        - mixed_precision
    - name: pruning
      methods:
        - magnitude_pruning
        - structured_pruning
        - dynamic_pruning
    - name: distillation
      methods:
        - knowledge_distillation
        - task_specific_distillation
  metrics:
    - model_size
    - inference_speed
    - accuracy_loss
    - memory_usage
๐ Reproducibility Studies¶
Research Reproducibility¶
Validating and reproducing AI research findings.
graph TD
    A[Original Study] --> B[Reproduction Setup]
    B --> C[Validation]
    C --> D[Analysis]
    D --> E[Findings]
Reproduction Framework¶
# Reproducibility study
class ReproducibilityStudy:
    def __init__(self, original_paper):
        self.paper = original_paper
        self.setup = self._initialize_setup()
    def _initialize_setup(self):
        return {
            "hardware": self.paper.hardware_specs,
            "software": self.paper.software_versions,
            "hyperparameters": self.paper.hyperparameters,
            "datasets": self.paper.datasets
        }
    def validate_results(self):
        results = []
        for experiment in self.paper.experiments:
            reproduction = self.run_experiment(experiment)
            comparison = self.compare_results(
                original=experiment.results,
                reproduced=reproduction
            )
            results.append(comparison)
        return results
Next Steps¶
- Explore AI Development Use Cases
- Review Security Testing Use Cases
- Check out our API Integration Guide