Skip to content

Research Projects

This guide provides examples of research projects that can be conducted using the Local AI Cyber Lab.

๐Ÿ”ฌ AI Security Research

LLM Vulnerability Research

Investigating security vulnerabilities in large language models.

graph TD
    A[Research Question] --> B[Experiment Design]
    B --> C[Data Collection]
    C --> D[Analysis]
    D --> E[Findings]
    E --> F[Publication]

Research Setup

# Experiment configuration
experiment = {
    "title": "LLM Vulnerability Analysis",
    "models": ["mistral", "llama2", "codellama"],
    "test_cases": 1000,
    "metrics": [
        "success_rate",
        "response_consistency",
        "vulnerability_score"
    ]
}

# MLflow tracking
with mlflow.start_run(experiment_id=experiment_id):
    mlflow.log_params(experiment)
    for model in experiment["models"]:
        results = run_security_tests(model)
        mlflow.log_metrics(results)

๐Ÿงช Model Behavior Analysis

Comparative Model Study

Analyzing behavior patterns across different models.

graph LR
    A[Models] --> B[Test Suite]
    B --> C[Behavior Analysis]
    C --> D[Pattern Detection]
    D --> E[Insights]

Study Framework

# Research framework
study:
  models:
    - name: mistral
      version: 7b-instruct
      parameters:
        temperature: 0.7
        top_p: 0.9

    - name: llama2
      version: 13b-chat
      parameters:
        temperature: 0.7
        top_p: 0.9

  test_categories:
    - logical_reasoning
    - knowledge_retrieval
    - creative_tasks
    - ethical_decisions

  metrics:
    - response_quality
    - consistency
    - truthfulness
    - safety

๐Ÿ“Š Performance Research

Model Efficiency Studies

Researching model performance and resource utilization.

graph TD
    A[Performance Metrics] --> B[Data Collection]
    B --> C[Analysis]
    C --> D[Optimization]
    D --> E[Validation]

Research Configuration

# Performance study setup
metrics = {
    "compute_efficiency": [
        "flops_per_token",
        "memory_usage",
        "inference_time"
    ],
    "quality_metrics": [
        "accuracy",
        "perplexity",
        "rouge_score"
    ],
    "resource_utilization": [
        "gpu_memory",
        "cpu_usage",
        "bandwidth"
    ]
}

# Experiment tracking
mlflow.log_params({
    "batch_sizes": [1, 8, 16, 32],
    "sequence_lengths": [128, 256, 512],
    "model_variants": ["base", "quantized", "pruned"]
})

๐Ÿ” Security Protocol Research

Novel Security Measures

Developing and testing new security protocols for AI systems.

graph LR
    A[Protocol Design] --> B[Implementation]
    B --> C[Testing]
    C --> D[Analysis]
    D --> E[Refinement]

Protocol Specification

# Security protocol design
protocol:
  name: "AI-Guardian-Enhanced"
  components:
    - name: input_validation
      type: pre-processing
      methods:
        - semantic_analysis
        - pattern_matching
        - anomaly_detection

    - name: runtime_monitoring
      type: processing
      methods:
        - behavior_tracking
        - resource_monitoring
        - response_validation

    - name: post_processing
      type: output_validation
      methods:
        - content_filtering
        - consistency_check
        - safety_verification

๐Ÿง  Cognitive Science Research

AI Behavior Studies

Investigating AI system behavior patterns.

graph TD
    A[Research Question] --> B[Experiment Design]
    B --> C[Data Collection]
    C --> D[Analysis]
    D --> E[Findings]

Study Design

# Cognitive experiment setup
experiment = {
    "title": "AI Decision Making Patterns",
    "hypotheses": [
        "H1: Context length affects decision consistency",
        "H2: Memory mechanisms impact reasoning ability",
        "H3: Attention patterns correlate with accuracy"
    ],
    "measurements": [
        "response_time",
        "attention_weights",
        "decision_paths",
        "uncertainty_metrics"
    ]
}

# Data collection
def collect_behavioral_data(model, test_cases):
    results = []
    for case in test_cases:
        response = model.generate(
            prompt=case.prompt,
            collect_metrics=True
        )
        results.append({
            "attention": response.attention_patterns,
            "decision_path": response.token_probabilities,
            "response_time": response.generation_time
        })
    return results

๐Ÿ“ˆ Optimization Research

Model Optimization Studies

Research on improving model efficiency and performance.

graph LR
    A[Baseline] --> B[Analysis]
    B --> C[Optimization]
    C --> D[Evaluation]
    D --> E[Results]

Research Framework

# Optimization research
optimization_study:
  techniques:
    - name: quantization
      methods:
        - int8
        - int4
        - mixed_precision

    - name: pruning
      methods:
        - magnitude_pruning
        - structured_pruning
        - dynamic_pruning

    - name: distillation
      methods:
        - knowledge_distillation
        - task_specific_distillation

  metrics:
    - model_size
    - inference_speed
    - accuracy_loss
    - memory_usage

๐Ÿ”„ Reproducibility Studies

Research Reproducibility

Validating and reproducing AI research findings.

graph TD
    A[Original Study] --> B[Reproduction Setup]
    B --> C[Validation]
    C --> D[Analysis]
    D --> E[Findings]

Reproduction Framework

# Reproducibility study
class ReproducibilityStudy:
    def __init__(self, original_paper):
        self.paper = original_paper
        self.setup = self._initialize_setup()

    def _initialize_setup(self):
        return {
            "hardware": self.paper.hardware_specs,
            "software": self.paper.software_versions,
            "hyperparameters": self.paper.hyperparameters,
            "datasets": self.paper.datasets
        }

    def validate_results(self):
        results = []
        for experiment in self.paper.experiments:
            reproduction = self.run_experiment(experiment)
            comparison = self.compare_results(
                original=experiment.results,
                reproduced=reproduction
            )
            results.append(comparison)
        return results

Next Steps